(BOOLE'S INEQUALITY) : P ( ⋃ k = 1 ∞ A k ) ≤ ∑ k = 1 ∞ P ( A k ) P(\bigcup_{k=1}^{\infty} A_k)\le \sum_{k=1} ^{\infty} P(A_k) P ( ⋃ k = 1 ∞ A k ) ≤ ∑ k = 1 ∞ P ( A k )
(BONFERRONI'S INEQUALITY) : P ( ∩ k = 1 ∞ A k ) ≥ 1 − ∑ k = 1 ∞ P ( A k c ) P(\cap_{k=1}^{\infty} A_k) \ge 1 - \sum_{k=1} ^{\infty} P(A_k^c) P ( ∩ k = 1 ∞ A k ) ≥ 1 − ∑ k = 1 ∞ P ( A k c )
(MARKOV INEQUALITY) : X X X is a non negative random variable, ∀ a > 0 , P ( X ≥ a ) ≤ E [ X ] a \forall a > 0, P(X \ge a)\le \frac{\mathbb{E}[X]}{a} ∀ a > 0 , P ( X ≥ a ) ≤ a E [ X ]
(CHEBYCHEV's INEQUALITY) : X X X is a random variable with finite mean μ X \mu_X μ X , ∀ a > 0 , P ( ∣ X − μ X ∣ ≥ a ) ≤ V a r [ X ] a 2 \forall a > 0, P(|X - \mu_X| \ge a)\le \frac{Var[X]}{a^2} ∀ a > 0 , P ( ∣ X − μ X ∣ ≥ a ) ≤ a 2 Va r [ X ]
(CHERNOFF's INEQUALITY) : X X X is random variable with MGF m X ( t ) m_X(t) m X ( t ) , ∀ a , P ( X ≥ a ) ≤ e − a t m X ( t ) \forall a, P(X \ge a)\le e^{-at}m_X(t) ∀ a , P ( X ≥ a ) ≤ e − a t m X ( t )
(CAUCHY-SCHWARTZ INEQUALITY) : ∣ C o v ( X , Y ) ∣ ≤ V a r [ X ] V a r [ Y ] |Cov(X,Y)| \le \sqrt{Var[X]Var[Y]} ∣ C o v ( X , Y ) ∣ ≤ Va r [ X ] Va r [ Y ]
prove by correlation definition: ∣ C o r r ( X , Y ) ∣ = ∣ C o v ( X , Y ) V a r [ X ] V a r [ Y ] ∣ ≤ 1 |Corr(X, Y)| = |\frac{Cov(X,Y)}{\sqrt{Var[X]Var[Y]}}| \le 1 ∣ C orr ( X , Y ) ∣ = ∣ Va r [ X ] Va r [ Y ] C o v ( X , Y ) ∣ ≤ 1
(JENSEN's INEQUALITY) : X X X is random variable with a convex function f f f s.t. E [ f ( x ) ] \mathbb{E}[f(x)] E [ f ( x )] is finite, then f ( E [ X ] ) ≤ E [ f ( X ) ] f(\mathbb{E}[X]) \le \mathbb{E}[f(X)] f ( E [ X ]) ≤ E [ f ( X )] , fliped inequality is true when f f f is concave.
f f f is linear cause equal.