Skip to main content

Cyclic Group

We define G={an:nZ}=aG = \{a^n:n\in\Z\} = \langle a \rangle is a Cyclic Group.

  • gG,g\forall g\in G, \langle g \rangle is a subgroup of GG (cyclic subgroup). gg is the genrator here.

  • cyclic group is abelian

  • HGH\le G is a subgroup of GG, gGg\in G, gH    gHg\in H \iff \langle g\rangle \subseteq H

  • a=a|a| = |\langle a\rangle|

  • subgroups of cyclic groups are cyclic, a=n    |\langle a\rangle| = n \implies the order of any subgroup of a\langle a \rangle is a divisor of nn; kn,k>0\forall k|n, k > 0, the group a\langle a\rangle has exactly one subgroup of order kk

  • Let HGH \le G be a subgroup, and let gGg\in G, then gHg\in H is equivalent to gH\langle g \rangle \sube H

  • let kZ+,kn    ϕ(d)=k\in \Z^+, k|n \implies \phi(d) = number of elements (with order dd) in a cyclic group of order nn

    • a,|\langle a\rangle| \ne \infty, the number of elements of order dd is a multiple of ϕ(d)\phi(d)
  • order:

    • The smallest positive integer n,gn=e    g=nn, g^n = e \implies |g| = n or infinite order (order of element of group)
    • g=n    gkgl=gk+l(mod n)|g| = n \implies g^k\cdot g^l = g^{k+l(mod \ n)}
    • ak=e=an    agcd(k,n)=ea^k = e = a^n\implies a^{gcd(k,n)}= e or a=gcd{nN:an=e}|a| = gcd\{n\in\N : a^n = e\}

Cyclic Group Theorem

Given precondition: GG be some group and aGa\in G.

Theorem 1

a=    (ai=aj    i=j)|\langle a\rangle| = \infty \implies (a^i = a^j \iff i = j)

a    (ai=aj    n(ij))|\langle a\rangle| \ne \infty \implies (a^i = a^j \iff n | (i-j))

From above, we have corollary that:

  • the order of element aa is the same as the order of group a\langle a\rangle, i.e. a=a|a| = |\langle a\rangle|
  • a=nak=e    nk|a| = n \land a^k = e \implies n|k
  • G|G| \ne \infty, a,bG,ab=ba    ababa,b \in G, ab=ba \implies |ab|||a||b|

Theorem 2

a=n    ak=agcd(n,k)|a| = n \implies \langle a^k \rangle = \langle a^{gcd(n,k)}\rangle where kZ+k \in \Z^+

a=n    ak=n/gcd(n,k)|a| = n \implies |a^k| = n/gcd(n,k) where kZ+k \in \Z^+

From above, we have corollary that:

  • ba,a    ba\forall b \in \langle a\rangle, |a| \ne \infty \implies |b| | |a|
  • a=n|a| = n. ai=aj    gcd(n,i)=gcd(n,j)    ai=aj\langle a^i\rangle = \langle a^j\rangle \iff gcd(n,i) = gcd(n,j) \iff |a^i| = |a^j|
  • a=n|a| = n.

Theorem 3 Fundamental Theorem of Cyclic Group

ba,a=n    bn\forall \langle b\rangle \le \langle a\rangle, |a| = n \implies |b| | n, that is, kZ+,kn    an/ka\forall k\in \Z^+, k|n \implies \langle a^{n/k}\rangle \le \langle a\rangle and an/k=k|a^{n/k}| = k

Theorem 4 Number of Elements of Each Order in a Cyclic Group

dZ+,dn    ϕ(d)=\forall d\in \Z^+, d|n \implies \phi(d) = number of elements (with order dd) in a cyclic group of order nn

From above, we have corollary that:

  • In a finite group, the number of elements of order dd is a multiple of ϕ(d)\phi(d)