Skip to main content

Group Isomorphisms

Isomorphism: a,bG,φ:GG,φ(ab)=φ(a)φ(b)    φ\forall a,b \in G, \varphi: G\to G', \varphi(ab) = \varphi(a)\varphi(b) \implies \varphi is bijective, then φ\varphi is a isomorphism.

  • GG is isomorphic to GG' note as GGG\cong G'

  • Any group is isomorphic to itself (reflexive)

  • GG    GGG\cong G' \implies G' \cong G (symmetric)

  • GH,HF    GFG\cong H, H\cong F \implies G \cong F (transitive)

  • a bijective function φ:GG\varphi : G \to G is isomorphism     φ\implies \varphi is an automorphism of GG

    • the set of all automorphisms of GG denote as Aut(G)Aut(G)
  • any isomorphism is a homomorphism (but not vice versa)

  • GZnG\cong \Z^n, we define its rank rk(G)=nrk(G) = n

Prove Structure for isomorphism:

  1. Define φ:GG\varphi: G\to G', a,bG,φ(ab)=φ(a)φ(b)\forall a,b\in G, \varphi(ab) = \varphi(a)\varphi(b)
  2. φ\varphi is bijective

Example:

  1. Prove (R,0,+)(R+,1,)(\R, 0, +)\cong (\R^+, 1, \cdot)
    1. Let φ:RR+\varphi: \R \to \R^+ where φ(x)=ex,φ(x+y)=ex+y=exey=φ(x)φ(y)\varphi(x) = e^x, \varphi(x+y) = e^{x+y}=e^xe^y=\varphi(x)\varphi(y)
    2. let x,yRx,y \in \R s.t. ex=eye^x = e^y then x=y    x = y \implies injective
    3. let yR+,ln(y)R,φ(ln(y))=y    y \in \R^+,\exists \ln(y) \in \R, \varphi(\ln(y)) = y \implies surjective
    4. then φ\varphi is isomorphism and (R,0,+)(R+,1,)(\R, 0, +)\cong (\R^+, 1, \cdot)

Isomorphism Property

let φ:GG\varphi: G\to \overline{G} be isomorphism :

  • gG,ord(g)=ord(φ(g))\forall g\in G, ord(g) = ord(\varphi(g))
  • ϕ\phi carries the identity of GG to the identity of G\overline{G}
  • GG is cyclic     \iff G\overline{G} is cyclic (i.e. G=g    G=φ(g)G = \langle g\rangle \iff \overline{G} = \langle \varphi(g)\rangle)
  • GG is abelian     \iff G\overline{G} is abelian (i.e For any elements aa and bb in GG, aa and bb commute if and only if ϕ(a)\phi(a) and ϕ(b)\phi(b) commute)
  • gG,CG(g)CG(φ(g))\forall g\in G, C_G(g) \cong C_{\overline{G}}(\varphi(g))
  • If GG is finite, then GG and G\overline{G} have exactly the same number of elements of every order
  • if KGK \leq G, then ϕ(K)G\phi(K) \leq \overline{G}

If such φM(A)=MAM1\varphi_M(A) = MAM^{-1}, we call φM\varphi_M conjugation by MM.

Cayley's Theorem: Every (finite) group is isomorphism to a group of permutation

Cayley's Theorem

Every (finite) group is isomorphism to a group of permutation

Automorphism

An isomorphism φ:GG\varphi: G\to G is called an automorphism of GG.

Let GG be a group, aGa \in G. The function ϕa,s.t.,xG,ϕa(x)=axa1\phi_a, s.t., \forall x\in G, \phi_a(x) = axa^{-1} is called the inner automorphism of GG induced by aa.

The set of automorphisms of GG is denoted by Aut(G)Aut(G) and the set of inner automorphisms of GG is denoted by Inn(G)Inn(G). They are both groups under operation of composition.

For every positive integer nn, Aut(Zn)U(n)Aut(Z_n) \cong U(n)