Arithmetic Progression:: ∑_i=kmi=(k+m)∗(m−k)/2=(m2−k2)/2; More specific, for all i,∥a_i−1−a_i∥=d,d∈R we have (a_0+a_n)∗(n+1)/2
Geometric Series: for r=1,<1
- Finite: ∑_i=0nari=a(1−r1−rn)
- Infinite: ∑_i=0∞ari=1−ra
Binomial Series: (a+b)n=k=0∑nnCk⋅akbn−k
- infinite: (1+x)n=∑k=0∞(kn)xk
Multinomial Series: (a1+a2+⋯+al)n=∑k1,k2,…,klk1!k2!…kl!n!∏i=1laiki
Negative Binomial Series: (a−b)−n=k=0∑∞(−n)Ck⋅akb−n−k
Commmon limitation
n→0limnan−1=lna
n→∞lim(1+nax)n=eax