Skip to main content

Series

Let (an)n=1(a_n)^{\infty}_{n=1} be a sequence of numbers, we define a infinite series with terms ana_n is the formal expression n=1an\sum_{n= 1}^{\infty} a_n. Define a sequence of partial sums (sn)n=1(s_n)_{n=1}^{\infty} by sn=k=1naks_n = \sum_{k=1}^n a_k

  • The sequence of partial sums converges     \implies this series converges or summable. Where shown in let L=limnsn=n=1anL = \lim\limits_{n\to\infty} s_n = \sum_{n= 1}^{\infty} a_n
  • n=11n\sum_{n= 1}^{\infty} \frac{1}{n} aka the harmonic series is diverge where 1+12+1+12+2(14)+=1+n/21 + \frac{1}{2} +\cdots \ge 1 + \frac{1}{2} + 2(\frac{1}{4}) + \cdots = 1 + n/2 where use the partial sum and group from 2n12^{n-1} to 2n2^n where always exists 2n12^{n-1} numbers in between
  • Sn=n=112nS_n = \sum_{n= 1}^{\infty} \frac{1}{2^n}
    • prove this converge:
    • 2Sn=1+Sn    Sn=12S_n = 1 + S_n \implies S_n = 1

(THEOREM 3.1.4) n=1an\sum_{n= 1}^{\infty} a_n converge     limnan=0\implies \lim\limits_{n\to\infty} a_n = 0, but verse not.

  • Which means, if we check and get the limit is not 0 we can immediately to judge it is diverge.

(CAUCHY CRITERION FOR SERIES): Let i=1ai\sum_{i = 1}^{\infty} a_i be such series:

i=1ai\sum_{i = 1}^{\infty} a_i converges     ϵ>0,NN,s.t.nN,k=n+1ak<ϵ    ϵ>0,NN,s.t.n,mN,k=n+1mak<ϵ\iff \forall \epsilon > 0, \exists N\in \N, s.t. \forall n\ge N, |\sum_{k = n+1}^{\infty} a_k| < \epsilon \iff \forall \epsilon > 0, \exists N\in \N, s.t. \forall n,m\ge N, |\sum_{k = n+1}^{m} a_k| < \epsilon

(3.2.1 PROPOSITION): Consider a sequence (an)(a_n), k>1,ak0sn=k=1nak\forall k > 1, a_k \ge 0 \land s_n = \sum_{k=1}^n a_k

  • (sn)n=1(s_n)_{n=1}^{\infty} is bounded above     n=1an\iff \sum_{n= 1}^{\infty} a_n converge
  • (sn)n=1(s_n)_{n=1}^{\infty} is unbound     n=1an\iff \sum_{n= 1}^{\infty} a_n diverge

A sequence (an)n=1(a_n)^{\infty}_{n=1} is a geometric sequence with ratio rr if n>0,an+1=ran\forall n>0, a_{n+1} = ra_n, that is, n0,an=a0rn\forall n \ge 0, a_n = a_0 r^n

  • geometric sequence converge when r<1|r| < 1. And the sum of such geometric sequence is n=0arn=a1r\sum_{n=0}^{\infty}ar^n = \frac{a}{1-r}

Convergence Test

(THE COMPARISON TEST): Let (an)(a_n) and (bn)(b_n) be 2 sequence of real numbers where n1,anbn\forall n\ge 1, |a_n| \le b_n

  • (bn)(b_n) converge     (an)\implies (a_n) converge where n=1ann=1bn|\sum_{n = 1}^{\infty} a_n| \le \sum_{n = 1}^{\infty} b_n
  • (an)(a_n) diverge     (bn)\implies (b_n) diverge

(THE ROOT TEST): Consider a sequence (an)(a_n), k,ak0\forall k, a_k \ge 0, let l=lim supannl = \limsup \sqrt[n]{a_n}. l<1    n=1anl < 1\implies \sum_{n= 1}^{\infty} a_n converges, and l>1    n=1anl > 1 \implies \sum_{n= 1}^{\infty} a_n diverges.

A sequence is alternating if it has the form ((1)nan)((-1)^n a_n) or ((1)n+1an)((-1)^{n+1} a_n) where n1,an0\forall n\ge 1,a_n \ge 0

(LEIBNIZ ALTERNATING SERIES TEST): Suppose that (an)n=1(a_n)^{\infty}_{n=1} is a monotone decreasing sequence and an0a_n \ge 0 where limn=0\lim\limits_{n\to \infty} = 0. Then alternating series n=1(1)nan \sum_{n= 1}^{\infty} (-1)^n a_n converges.

(THE LIMIT COMPARISON TEST): If n=1an\sum\limits_{n=1}^{\infty} a_n and n=1bn\sum\limits_{n=1}^{\infty} b_n are series with bn0b_n \ge 0 such that lim supnanbn<\limsup\limits_{n\to \infty} \frac{|a_n|}{b_n} < \infty and n=1bn<\sum\limits_{n=1}^{\infty} b_n < \infty, then the series n=1an\sum\limits_{n=1}^{\infty} a_n converges.

(THE RATIO TEST): Suppose that (an)n=1(a_n)^{\infty}_{n = 1} is a sequence of positive terms. If lim supnan+1an<1\limsup\limits_{n\to \infty} \frac{a_{n+1}}{a_n} < 1, then n=1an\sum\limits_{n=1}^{\infty} a_n converges. Conversely, lim infnan+1an>1\liminf\limits_{n\to \infty} \frac{a_{n+1}}{a_n} > 1 , then n=1an\sum\limits_{n=1}^{\infty} a_n diverges.

(THE INTEGRAL TEST): Let f(x)f(x) be a positive, monotone decreasing function on [1,)[1,\infty). The sequence (f(n))(f(n)) is summable if and only if 1f(x)dx<\int^{\infty}_{1} f(x)dx < \infty.

Absolutely Convergent

n=1an\sum_{n = 1}^{\infty} a_n is called absolutely convergent     n=1an\implies \sum_{n = 1}^{\infty} |a_n| converges. A series converges but is not absolutely convergent is called conditionally convergent.

  • An absolutely convergent series is convergent.

A rearrangement of a series n=1an\sum_{n = 1}^{\infty} a_n is another series with the same terms in a different order. this can be described by a permutation π\pi of the natural numbers N\N determining the series n=1aπ(n)\sum_{n = 1}^{\infty} a_{\pi(n)}

(THEOREM 3.3.5): Every rearrangement of an absolutely convergent series converges to the same limit.

(THEOREM 3.3.7): A rearrangement of a series n=1an\sum_{n = 1}^{\infty} a_n is conditionally convergent series     LR\implies \forall L\in \R there exists a rearrangement that converges to LL